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Mass spectra of N-substituted cantharidinimides
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The mass spectra of a series of N-substituted cantharidinimides were examined. The feature of this series
compounds is a sequential double hydrogen transfer from the oxabicycloheptane unit to either the carbonyl
group of the succinimide unit or the nitrogen atom of the pyridyl or thiazolyl substituent through space.
The ability of the N-substituent to accept a hydrogen atom possibly leads to the different fragmentation

pathway. Copyright © 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

Cantharidin (1), isolated from Mylabris caraganae and various
other insects,!'? has an extremely high potency with antitu-
mor and antihepatoma properties.®>~> However, it is rarely
employed to the therapeutic treatment owing to the irritation
and vesicating side-effects and as toxic properties.° Employ-
ing simple chemical modification, a series of N-substituted
cantharidinimides, 3-25, were easily prepared starting from
7-10 and the analogues exhibit less
toxicity, no side-effects and potent biological activities.”
N-Substituted cantharidinimides possess a highly strained
oxabicycloheptane,'! succinimide!? and N-substituted group
units, and therefore are of interest with regard to their

1 with various amines,

fragmentation patterns in mass spectrometry. So far as we
are aware, this is the first report on the mass spectra of
N-substituted cantharidinimides.

EXPERIMENTAL

Procedures for the preparation of N-substituted canthari-
dinimides 3-15,"° 16-19° and 20-25% (Fig. 1) have been
described. Mass spectra were obtained on a Joel J]MS-HX
110 and gas chromatography/mass spectrometry HPS989B
with duplicate measurements. High-resolution mass spectra
were measured on a JEOL JMS SX/SX 102A instrument at
National Chung Hsien University, Taichung, Taiwan.

RESULTS AND DISCUSSION

Electron ionization mass spectral data are given in Table 1.
The results indicate that, generally, three series of N-
substituted cantharidinimides display weak molecular ions
with common ions [M —43]* a, [M —56]*° b, [M — 69]* ,
[M—70]** 4, [M —151]* e, [M — 152]** ¢/, m/z 109 f, m/z
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Figure 1. Cantharidin (1) and N-substituted derivatives 3-25.

96 g, and m/z 81 h. In order to verify the possible fragment
ions, the chemical compositions of selected molecular ions
and some of common ions were confirmed by using high-
resolution mass spectrometric analyses. The results are
summarized in Table 2, and based on these the proposed
fragmentation mechanisms described here are feasible.
Either the [M —69]" ion or the m/z 96 ion as the
base peak depends on the type of N-substituted group.
The formation of [M — 69]* ions ¢ must result from a
hydrogen transfer occurring from the oxabicycloheptane
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Table 1. Mass spectra of some cantharidinimides

Compound m/z (relative abundance, %)

3 272 (M**, 15), 243 (14), 229 (4)3, 203 (100)¢, 202 (15)¢, 121 (7)°, 109 (4)!, 96 (26)8, 81 (4)™, 79 (8), 78 (8), 67 (8), 53 (7)

4 286 (M**, 5), 243 (4), 217 (100)¢, 216 (7)4, 135 (4)2, 124 (3), 109 (4)f, 96 (18)8, 92 (7), 81 (4)", 79 (5), 67 (8), 55 (12), 53 (8)

5 286 (M**, 6), 257 (2), 243 (6)*, 217 (100)°, 203 (2), 135 (4)°, 124 (2), 109 (4)f, 96 (21)8, 92 (5), 81 (4)!, 79 (6), 67 (7), 65 (4),
55 (4), 53 (6)

6 286 (M*°, 4), 257 (3), 243 (6)?, 217 (100)<, 203 (3), 135 (6)¢, 109 (5)f, 97 (8), 96 (18)8, 81 (6)", 67 (9), 65 (6), 55 (9), 53 (8)

7 300 (M*°, 9), 285 (4), 271 (3), 257 (24)?, 233 (5), 232 (55), 231 (100)<, 230 (8)4, 217 (9), 201 (4), 187 (10), 174 (5), 173 (6),
150 (5), 149 (30)¢, 148 (12), 109 (3)f, 106 (9), 105 (5), 96 (108, 81 (4)", 79 (8), 77 (6), 67 (5), 55 (3), 53 (5)

8 308 (5), 306 (M**, 16), 263 (4)?, 239 (38), 238 (15), 237 (100)<, 236 (14)4, 155 (3)¢, 128 (11), 109 (5)f, 96 (20)8, 81 (4)*, 79
(3), 67 (6), 65 (2), 55 (3), 53 (5)

9 352 (9), 350 (M**, 10), 323 (2), 321 (2), 309 (7), 307 (7)?, 283 (22), 282 (84), 281 (24)¢, 280 (84)4, 267 (3), 259 (3), 158 (2),
156 (2), 128 (26), 109 (26)f, 97 (7), 96 (100)8, 95 (13), 83 (15), 81 (31)", 79 (13), 77 (10), 70 (7), 68 (7), 67 (19), 65 (7), 55 (7),
53 (15)

10 317 (M**, 5), 274 (2)7, 261 (1), 256 (1), 248 (100)°, 232 (8), 202 (7), 109 (7)f, 96 (26)8, 81 (7)", 67 (11), 55 (8), 53 (7)

11 288 (M**, 21), 245 (16)?, 231 (10), 230 (13), 219 (100)°, 137 (12)¢, 136 (7), 109 (7)f, 96 (18)8, 95 (7), 81 (8), 79 (7), 67 (11),
55 (8), 53 (10)

12 272 (M**, 13), 229 (6)?, 216 (3), 203 (100)¢, 202 (47)4, 189 (5), 124 (6), 121 (5)¢, 109 (13)!, 96 (49)8, 95 (11), 81 (14)*, 79
(13), 67 (18), 55 (11), 53 (14)

13 308 (11), 306 (M™°, 31), 265 (4), 263 (11)2, 252 (4), 250 (11), 240 (27)°, 237 (92)¢, 236 (32), 156 (14), 155 (34)¢, 154 (39),
123 (16), 112 (16), 109 (34), 99 (22), 96 (100)8, 95 (34), 91 (27), 81 (3N", 79 (43), 77 (33), 70 (18), 67 (65), 55 (24), 53 (55)

14 302 (M**, 19), 273 (8), 259 (9)?, 246 (4)°, 234 (86), 233 (100)¢, 231 (38)4, 125 (9), 124 (22), 123 (12), 109 (28)f, 108 (15), 96
(89)8, 95 (22), 81 (30)", 79 (21), 67 (35), 55 (19), 53 (28)

15 272 (M**, 21), 243 (2), 229 (9)2, 216 (4)°, 203 (100)¢, 202 (47)4, 189 (4), 175 (2), 124 (5), 121 (5)¢, 109 (10, 96 (45)8, 95
(10), 81 (13), 79 (12), 69 (14), 67 (16), 55 (11), 53 (14)

16 278 (M**,12), 235 (8)2, 211 (12), 210 (12), 209 (100)¢, 195 (3), 127 (14)¢, 126 (13), 109 (9)f, 96 (35)8, 95 (13), 81 (18)", 79
(21), 77 (13), 67 (36), 58 (33), 55 (29), 53 (42)

17 292 (M**, 23), 249 (7)?, 225 (5), 224 (14), 223 (100)¢, 141 (10)°, 140 (8)¢', 114 (3), 109 (8, 96 (25)8, 95 (11), 81 (13)™, 79
(16), 77 (8), 72 (21), 67 (37), 55 (18), 53 (30)

18 292 (M**, 23), 249 (15)2, 225 (6), 224 (15), 223 (100)¢, 141 (13)¢, 140 (8)¢, 114 (3), 109 (9)f, 96 (31)8, 95 (13), 81 (16)", 79
(19),77 (12), 72 (22), 69 (16), 67 (39), 59 (18), 55 (23), 53 (40)

19 355 (M*°, 33), 312 (4)%, 288 (6), 287 (18), 286 (100)¢, 204 (3), 183 (8), 134 (76)¢, 109 (9)f, 103 (31), 96 (21)8, 95 (12), 91
(13), 81 (14)h, 79 (18), 77 (48), 70 (18), 69 (16), 67 (29), 55 (21), 53 (29)

20 272 (5), 271 (M**, 24), 228 (3)2, 215 (3)°, 203 (68), 202 (69)¢, 201 (32)4, 188 (4), 142 (4), 125 (12), 124 (6), 120 (6)¢, 119
(13)¢, 109 (22)f, 96 (100)8, 95 (22), 91 (27), 81 (28)", 79 (29), 77 (35), 70 (36), 68 (18), 67 (56), 65 (22), 55 (26), 54 (18), 53
(50), 51 (27)

21 347 (M**, 4), 279 (3), 278 (5)¢, 277 (8)4, 195 (6)¢', 109 (13)f, 96 (100)8, 95 (21), 81 (20)1, 79 (22), 77 (13), 70 (43), 69 (17),
68 (20), 67 (47), 65 (13), 55 (20), 53 (39), 51 (28)

22 351 (26), 349 (M™**, 27), 308 (4), 306 (4)?, 295 (4), 293 (4)b, 282 (27), 281 (78), 280 (29)¢, 279 (48)4, 201 (7), 197 (7)¢, 171
(5), 124 (15), 123 (8), 110 (11), 109 (21)f, 96 (100)8, 95 (22), 90 (15), 81 (47)", 79 (21), 69 (40), 67 (37), 55 (29), 53 (21)

23 397 (M**, 76), 396 (13), 329 (65), 328 (47)°, 327 (64)4, 270 (5), 230 (18), 202 (24), 201 (54), 127 (19), 124 (28), 123 (15),
109 (30)f, 97 (22), 96 (100)8, 95 (38), 90 (27), 81 (31), 79 (22), 71 (26), 69 (39), 67 (41), 55 (42), 53 (37)

24 329 (M**, 100), 286 (3)2, 273 (4)°, 261 (25), 260 (88)°, 259 (25), 245 (7), 188 (6), 177 (23)¢', 175 (8), 162 (6), 151 (20), 136
(35), 124 (29), 123 (13), 121 (34), 109 (23)f, 96 (81)8, 95 (30), 93 (38), 83 (33), 81 (33)", 79 (18), 69 (18), 67 (64), 65 (20), 55
(28), 53 (40)

25 419 (28), 418 (M**, 87), 375 (5)2, 350 (25), 349 (62)<, 348 (21)9, 267 (9), 266 (20), 265 (17)¢, 250 (4), 240 (8), 226 (13), 225

(8), 209 (4), 124 (22), 123 (18), 122 (23), 121 (63), 109 (31)f, 96 (100)8, 95 (31), 81 (49)h, 79 (43), 78 (40), 77 (50), 69 (59),
67 (87), 55 (52), 53 (65)

a[M - CH; — COJ*.

b M — 2CO]J*°.
<M — C4H50]+.
d M — C4H(O]**.

¢[M — CoHy10,]7.
¢ [M — CoHp0,]**.

f[CsH3NO,]t.
8 [CsHeNOJ*.
h[CsH50]*.
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Table 2. High-resolution mass units for selected molecular ions and some common ions?

Mol. formula

[M — C4H50]+ C

M — C,HO]** d

[M — CoH110:]" e

[C;HO]" £

[C4HsO]™" g

Compound mass units (A) mass units (A) mass units (A) mass units (A) mass units (A) mass units (A)
3 C15H16N2 03 CiiH11N2O; C11H10N>O, C¢HsN>O

272.1157 (0.5) 203.0819 (0.2) 202.0744 (—0.1) 121.0403 (—0.1) 109.0657 (—0.4) 96.0573 (0.2)
4 C16Hi1sN2O3 Ci2H13N2O; C12H12N>O, C7H7N>,O

286.1320 (=02)  217.0979 (=0.1)  216.0896 (0.2) 135.0564 (0.5) 109.0658 (—0.5)  96.0580 (=0.5)
8 C15H15CIN,O3 C11H10CIN,O, C11HeCIN,O, CeH4CIN,O

3060774 (—0.1)  237.0430 (—0.2)  236.0354 (—0.4) 155.0021 (—0.8) 109.0647 (0.6)  96.0574 (0.1)
15 C15H16N2 03 CiiHiN2O; C11H10N2O, C¢HsN>O

2721160 (0.2) 2030829 (—0.8)  202.0745 (~0.2) 121.0402 (—0.1) 109.0650 (0.3)  96.0577 (=0.2)
16 C13H14N> O3S CoHyN,O,S CyHgN,O,S C4H3N,0S

278.0730 (—0.4)  209.0383 (0.3) 208.0305 (0.2) 126.9969 (—0.2) 109.0655 (—0.2)  96.0579 (=0.4)
20 C16H17NO3 C1oH1pNO, C1,H11NO, CyHgNO

2711211 (=0.1) 2020872 (=0.2)  201.0790 (0.0) 120.0447 (0.2) 109.0660 (=0.7)  96.0570 (0.5)

@ Mass units, observed mass; A, error (mmu) = (calculated mass — observed mass) x 1000.

unit to either the succinimide or the N-substituted group
prior to the fragmentation of the oxabicycloheptane unit.
Thus, a hydrogen transfer occurs through space to form
the corresponding intermediates I, sequentially followed
by a second transfer to the nitrogen atom on the pyridyl
or thiazolyl substituent through a six-membered transition
state leading to the corresponding intermediates II as shown
in Scheme 1. If the nitrogen atom of the succinimide unit
behaves as a receptor to abstract a hydrogen atom for this
series of compounds, and distance will be too great to reach
and all compounds will give the same [M — 69]* ion ¢ as
the base or main peak. However, only N-pyridyl and N-
thiazolyl derivatives yielded [M — 69]" as the base peak.
The presence of the [M — 151]* ion e also proved that the
corresponding protonated isocyanates produced from c via
the loss of 1,2-dimethylcyclopropenone must be derived
from a hydrogen transfer process. For the N-pyridyl and
N-thiazolyl derivatives, a nitrogen or sulfur atom on the ring
acts as an ionization center, receiving a hydrogen for further
fragmentation leading to [M — 69]* as the base peak.

The thiazolyl ring has a lower ionization energies
and a high efficiency for the formation a cation radical,
and [M —70]** ions are not observed from this series of
compounds.’®~1® The fragment of RC,HS derived from the
thiazolyl ring became an important product as observed from
2-substituted thiazoles. Halogen (Cl, Br)-containing pyridine
derivatives are the exception owing to the lower ionization
potential of halogen to compete for ionization.

For the N-aryl series, the nitrogen of succinimide could
be a better ionization center than the aryl ring. Formation
of the corresponding [M — 69]* ions with relatively weak
intensity in comparison with those of the N-pyridyl and N-
thiazolyl series is ascribed to the efficiency of intramolecular
hydrogen transfer being relatively low. Thus, the simple
cleavage of oxabicycloheptane to evolve divinyl ether
neutral species leads to the corresponding [M — 70]** radical
cations ¢ with relatively high abundance as shown in
Scheme 2. Subsequently, the corresponding ions ¢ undergo
a maleimide ring cleavage to form the corresponding
[M — 152]** arylisocyanate radical cations e’ instead of their

Copyright © 2004 John Wiley & Sons, Ltd.

M-151]*

Scheme 1

_ ot O +.
N—R _ CaHeQ )]:‘éN—R
0

© CsHO
-0=C=N-R d \5 6
M-70] "

+e
R-N=C=0
+eo -H + o
0O — " .
0 M-152]"
m/z 82 h
m/z 81
Scheme 2

protonated counterparts e generated from the N-pyridyl and
N-thiazolyl series. Maleimide is also a strain unit, and leads to
alactam ion by loss of a CO molecule.'®'” This fragmentation

J. Mass Spectrom. 2004; 39: 153-157
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process along with the loss of a methyl radical or another CO
leads to the corresponding [M — 43]* ions a and [M — 56]**
radical cations b, respectively, as shown in Scheme 3.

o+

(-

f +CH2
e m/z109

Scheme 3

Scheme 4

It is noteworthy that ions of m/z 109 f, m/z 96 g,
and m/z 81 h with fairly constant relative abundance
are always observed, and become the significant frag-
ments for N-substituted cantharidinimides. The forma-
tion of those ions is independent of the N-substituted
groups. It is postulated that the formation of the m/z
109 f ion comes from the loss of isocyanates from a
as shown in Scheme 3, and the ion of m/z 81 h is
derived from the fragmentation of the corresponding N-
substituted maleimides d as illustrated in Scheme 2. For

Copyright © 2004 John Wiley & Sons, Ltd.

JMS

the N-arylcantharidinimides, the fragment ion of m/z 96
is always the base peak and consists of a C4HgO unit on
the basis of high-resolution mass unit analysis. Since there
is no heteroatom on the N-substituted groups, a sequen-
tial double hydrogen transfer does not occur as shown in
Scheme 1. Thus, another proposed mechanism is illustrated
in Scheme 4.

CONCLUSION

Although cantharidinimiodes contain highly strained oxabi-
cycloheptane and succinimide units, their fragmentation
patterns in mass spectrometry are strongly dependent on
the type of N-substituted groups. The main feature in this
series of compounds is a sequential double hydrogen trans-
fer from the oxabicycloheptane unit to either the carbonyl
group of the succinimide unit or the nitrogen atom of the N-
pyridyl or N-thiazolyl substituent through a relatively short
distance.
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